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1 INTRODUCTION

1.1 Scope and content of the document

The objective of this document is to describe the theoretical basis, justification and

methods applied to produce annual maps of land use and land cover (LULC) in the

South American Pampa biome of Argentina, Brazil and Uruguay from 1985 to 2023

(Collection 4). The document presents a general description of the satellite image

processing, the feature inputs and the process, step by step, applied to obtain the

annual classifications.

1.2 Region of Interest

Trinational Pampa MapBiomas initiative was created to produce LULC annual maps

for the Pampa biome corresponding to Argentina, Brazil and Uruguay territories.

Other phytogeographic regions closed or interspersed with Pampa were partially

added to allow a better regional delimitation. Thus, in Argentina, a neighboring area

of Espinal phytogeographic province and Paranaense phytogeographic province

were also included (Figure 1).

The total mapped area was 109.21 million hectares (Mha), being 83.81 Mha in the

Pampa (21%), 23.15 Mha in the Espinal (77%) and 2.25 Mha in the Paraná river

delta (2%).
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Figure 1. Region of interest mapped in the Trinational MapBiomas Pampa initiative (collection 4),
including the typical areas of the Pampa, Espinal, and Parana river Delta.

2 GEOGRAPHICAL UNITS OF CLASSIFICATION

In each country, the classification process was carried out in smaller spatial units.

These units correspond to subregional homogeneous zones based on several

criteria, nationally defined, including geomorphology, soils, vegetation types and land

use patterns.

The study area was divided in 27 homogeneous zones, thirteen in Argentina, seven

in Brazil and seven in Uruguay (Figure 2).

The purpose of these geographical units of classification was to try to reduce

samples and class confusion and to allow a better balance of samples and results to

improve accuracy.
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Figure 2. Country defined homogeneous subregions used in the classification process of the South
American Pampa biome.

3 REMOTE SENSING DATA

3.1 Landsat Collection

The imagery dataset used in the Trinational Pampa MapBiomas Collection 4 was

obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic

Mapper Plus (ETM+) and the Operational Land Imager and Thermal Infrared Sensor

(OLI-TIRS), on board of Landsat 5, Landsat 7 and Landsat 8, respectively. The

Landsat imagery collections with 30 m-pixel resolution were accessible via Google

Earth Engine, and were provided by NASA and USGS. The Trinational Pampa

MapBiomas Collection 4 used Collection 2, Tier 1 Landsat Surface Reflectance

products from USGS, which underwent through radiometric calibration and

orthorectification correction based on ground control points and digital elevation

model to account for pixel co-registration and correction of displacement errors. A

total of 74 scene boundaries were used to cover the entire region, where each of

them is totally or partially within the area.
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According to the year and the quality of available images, a specific Landsat

collection was selected:

● from 1985 to 1999: Landsat 5,

● year 2000: Landsat 5 (Brazil and Uruguay) and Landsat 7 (Argentina),

● years 2001, 2002 and 2012: Landsat 7,

● from 2003 to 2011: Landsat 5,

● from 2013 to 2023: Landsat 8.

3.2 Landsat Mosaics

All Landsat scenes were merged and clipped within standardized spatial units for

data processing, hereafter called ‘charts’, based on the grid of the World

International Chart to the Millionth, at the 1:250,000 scale level. A total of 99 charts

were used to cover the biome (Figure 3). Each chart sets the geographical limits to

build up the temporal and spatial Landsat mosaics and to proceed with digital

classification procedures. Each geographical classification unit was generated by

merging the correspondent mosaic charts.

Figure 3. Charts scheme used to build up Landsat mosaics used throughout the classification
process.
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3.3 Definition of the temporal period

The mosaics were generated by the composition of pixels in each set of images for a

certain time period. The periods of the year in which the images are selected vary by

country and result from the balance between the probability of maximizing the

differences in classes spectral behavior and the availability of cloud-free images. In

Uruguay and Brazil, the considered period was from September to November of

each year, while in Argentina from May to July. Nevertheless, for some years this

period was adapted (extended one to three months) for each chart according to the

availability of cloud-free images. For example, if during the three-months period a

cloud free mosaic could not be generated, the period was extended to four, five or

six months to get a complete or almost complete mosaic.

For the selection of Landsat scenes a threshold of 90% of cloud cover was applied

(i.e., any available scene with up to 90% of cloud cover was accepted). This limit

was established based on a visual analysis, after many trials observing the results of

the cloud removing/masking algorithm. Time periods were extended for some years

and portions of the study area when the availability of cloud-free images was low.

4 CLASSIFICATION

4.1 Overview of methodological process

The methodological procedures of Collection 4 included several steps (Figure 4).
The first step was to generate annual Landsat image mosaics based on yearly

periods. The second step was to generate a new selection of temporally stable

samples derived from the stable areas of the maps of Collection 3. Stable areas

were defined in sub-periods of near 10 years-length (1985-1994, 1995-2004,

2005-2014 and 2015-2023). Then, the spectral feature inputs derived from the

Landsat bands were extracted and associated to each sample point. Once the

samples for each LULC class were selected for each of the subregions, it was

possible to adjust the training data set according to its statistical needs. The number

of training samples for each class was defined initially according to the proportion of

the area of each class and its variation along the classification period (sample size

balance) taken from Collection 3. Additionally, to improve the classification results,

complementary samples were generated, defining georeferenced points of different

classes by visual interpretation of historical satellite images (high and very high

resolution images) and time series of vegetation indices. Based on the adjusted
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training data set, a supervised classification using the random forest algorithm was

run.

Following that, gap, spatial, temporal and frequency filters were applied to remove

classification noise and stabilize the classification. The LULC maps of each

subregion were integrated to generate the final map of Collection 4. The MapBiomas

annual LULC maps were used to derive the transition analysis (with an additional

spatial filter application) and statistics. The statistical analysis covered different

spatial territories, such as countries, state similar and municipality similar levels of

each country, water basin and phytogeographic provinces.

Figure 4. Classification process of Collection 4 in the MapBiomas South American Pampa biome for
the period 1985-2023.
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4.2 Map Legend

The classification for the Trinational Pampa MapBiomas initiative using Landsat

mosaics included ten land use and land cover (LULC) classes (Table 1): Forest
formation (3), Savanna formation (4), Wetland (11), Grassland (12), Pasture (15),

Silviculture (9), Temporary crop (19) , Perennial crop (36), Non vegetated area (22)

and River, lake or ocean (33). A full description of the legend is described in the

document Legend Description.

Table 1. Land cover and land use classes considered for digital classification of Landsat mosaics for
the South American Pampa biome - Collection 4.

Legend class of Collection 4 Numeric ID Color

1.1. Forest formation 3

1.2. Savanna formation 4

2.1. Wetland 11

2.2. Grassland 12

3.1. Pasture 15

3.2. Temporary crop 19

3.3. Forest plantation 9

3.4 Perennial Crop 36

4. Non vegetated area 22

5.1. River, lake or ocean 33
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4.3 Annual Mosaics

The total available bands of the Trinational MapBiomas Pampa feature space is

composed of 93 input variables, including the original Landsat bands, fractional and

textural information derived from these bands (Table 2). Reducers were used to

generate temporal features such as:

● Median: median of the pixel values of the best mapping period defined by each
country.

● Median_dry: median of the quartile of pixels with the lowest NDVI values.

● Median_wet: median of the quartile of pixels with the highest NDVI values.

● Amplitude: amplitude of variation of the index considering all the images of each
year.

● stdDev: standard deviation of all pixel values of all images of each year.

● Min: lower annual value of the pixels of each band.
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Table 2. Variables included in the feature space used in the classification of the Mapbiomas Trinational Pampa Landsat image mosaics. Collection 4 (1985-2023).
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4.4 Classification algorithm, training samples and parameters

Classification was performed subregion by subregion, year by year, using the

Random Forest algorithm (Breiman, 2001) available in Google Earth Engine, running

100 iterations (random forest trees).

Training samples for each subregion were defined following a strategy of using

random pixels where land use and land cover remained the same (stable samples)

along the maps of Collection 3 over different subperiods: 1985-1994, 1995-2004,

2005-2014 and 2015-2023, named as “stable samples”.

The identification of stable areas to extract random pixels or “stable samples” was

based on a criterion of minimum temporal frequency aiming to ensure confidence to

use them as training areas. Each pixel should be classified with the same LULC

class throughout each sampling subperiod (1985-1994, 1995-2004, 2005-2014 and

2015-2023). A layer of pixels with a stable classification for each subperiod was then

generated. From the resulting layer of stable samples, a subset of 2,000 samples for

each subregion was randomly generated for each class for each subperiod. It is

important to clarify that not all of these samples were necessarily used in the

classification process for each year.

In addition, a classical procedure to detect outliers was implemented. For each year,

and within each training class, we searched for outliers in all variables. An outlier

was defined as any value of a specific variable lower or higher than 1.5 times the

interquartile range (the first quartile value subtracted from the third quartile value)

considering all values of this variable within a specific class of a particular year.

Samples containing values considered outliers for some variables were not

discarded a priori, but fixed by replacing those values with the 5th percentile or the

95th percentile, whenever they were lower or higher than the thresholds considered,

respectively. Finally, we disregarded only those samples containing simultaneously

more than 20 variables of the feature space with values considered as outliers.

4.4.1 Sample size balance

We generated a fixed number of samples for each class, subregion and subperiod

for classification. However we used in the classification process only a random

subset based on the class area proportion within each subregion, considering each

year to be classified. To do this we previously adjusted linear simple functions to
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estimate the area of each class for each year from 1985 to 2023, based on the

annual class area observed along the Collection 3 dataset. These functions were

used to estimate, for each year, the proportion of each class to train the classifier.

Then, these annual proportions for each class were set to extract a subset of the

available samples for the correspondent classification in each year. Whenever the

classification resulted in overestimation or underestimation of the class after

comparing with supplemental information (e.g.: Collection 3 maps, Landsat mosaics,

independent crop type maps, etc.) this proportion was adjusted changing the bias

(intercept of linear regression model) accordingly. Notwithstanding the above, a

minimum number of 50 to 100 samples per class was set for each region and year,

to ensure the correct detection of the less frequent categories.

4.4.2 Complementary samples

The need for adding complementary samples was evaluated by visual inspection of

the output of a preliminary classification, with both Landsat and high-resolution

images available in GEE and time series of vegetation indices, and also by

comparing with the Collection 3 classification. Complementary sample collection was

also done manually using points in Google Earth Engine Code Editor. All the

false-color images of the 39 years (1985-2023) Landsat mosaics and the vegetation

index time series were checked at the selected point. Based on the knowledge of

each subregion, the samples for different classes were collected. Complementary

samples previously generated for Collection 3 were also added in some regions to

improve the classification when necessary.

4.4.5 Final classification

The final classification was performed for all subregions and years combining stable

and complementary samples. For some years the classification output resulted in

anomalous results for some classes. Then, it was necessary to improve the

classification through a new sample size balance and a specific set of

complementary samples.

4.4.6 Post-classification

The results of the final classification were improved through a sequence of filters, to

correct missing data, “salt-and-pepper” classification errors and, specially, cases of

misclassification. Temporal filters were done with the aim to generate a more stable
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classification pattern over time, avoiding unexpected class variation during short

times.

4.4.6.1 Gap fill filter

A filter to fill no-data pixels (“gaps”) was applied. Because theoretically the no-data

values are not allowed, they are replaced by the temporally nearest valid

classification. In this procedure, if no “future” valid position was available, then the

no-data value was replaced by its previous valid class. Therefore, gaps should only

exist if a given pixel has been permanently classified as no-data throughout the

entire temporal domain.

4.4.6.2 Spatial filter

The spatial filter avoids unwanted modifications to the edges of the pixel groups, a

spatial filter was built based on the "connectedPixelCount" function. Native to the

GEE platform, this function locates connected components (neighbors) that share

the same pixel value. Thus, only pixels that did not share connections to a

predefined number of identical neighbors were considered isolated. In this filter, at

least six connected pixels were needed to reach the minimum connection value.

Consequently, the minimum mapping unit is directly affected by the spatial filter

applied, and it was defined as 6 pixels (~0,5 ha).

4.4.6.3 Temporal filters

The temporal filters use the information from the year before and after to identify and

correct a pixel misclassification, considered as cases of invalid transitions. In a first

step, the filter looks for specific cover classes (3, 4, 11, 12, 33) that are not this class

in 1985 and were kept unchanged in 1986 and 1987 and then corrects the 1985’s

value to avoid any regeneration in the first year. In a second step, the filter looks at a

pixel value in 2023 that for example is not 11 (wetland) but is equal to 11 in 2021 and

2022. The value in 2023 is then converted to 11 to avoid any regeneration in the last

year. The third process looks in a 3-year moving window to correct any value that

changed in the middle year and returns to the same class next year.

A temporal filter with a slightly different approach was applied to solve problems in

forestry classification. To correct the problems related to the years with forestation

cutting, interrupting a continuous series of years classified as forestry we used a
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special six-year spatial filter. The rule of application checks whether two years before

and two years after the class was forestation, if this is true it shifts the classification

of the two middle years to silviculture.

4.4.6.4 Frequency filter

To correct classification problems associated with some classes in specific regions,

frequency filters were applied to use the temporal information available for each pixel

to correct false positives cases. The general logic of the frequency filter is to search

for each pixel a specific combination of classes throughout the 39 years producing a

subset of pixels considered eligible for correction. Then the filter detects and

overwrites only those years where cases of false positives are present using a fixed

class value, that usually is the mode of classifications detected along the temporal

range. This type of filter was used with parsimony to solve very well delimited cases.

4.4.6.5 Specific filters

Additional specific filters were generated to remove unexpected classification

changes that remained after applying previous standard filters. In general, these

filters operate based on frequency and incidence. Frequency is the number of years

a class occurs in a pixel. The incidence is the number of times that a pixel

classification changes along the entire series of years. The application of these filters

was limited to fix problems of false transitions between specific classes.

We also used a filter that eliminates problems related to the shadows of the

mountains. These filters use characteristics of the relief, in addition to the frequency

to be applied. It corrects false positives of water and wetland in shaded slopes in

regions with wavy relief. The filter selects all pixels classified as water at least in one

year but in less than 37 years (<95%), or as wetland at least in one year but in less

than 35 years (<90%), whenever occurring in areas of cliffs and slopes, established

by a combination of slope data (SRTM derived) with HAND (Height Above the

Nearest Drainage) database, to define places where it is not expected the presence

of water or wetland. In such cases, both classes were replaced by the class

corresponding to the pixel mode.

A filter to smooth abrupt transitions between the first and the second year

(1985-1986) and the last and penultimate years (2022-2023) was applied only in

Argentina and Brazil. It has been observed in previous collections, that the last year
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of the series registered an unexpected increase in the area of anthropic classes and

a decrease of natural classes, most likely corresponding to an artifact resulting from

the set of applied filters. To alleviate the problem, a filter was developed to smooth

this abrupt transition, avoiding all transitions from natural areas to anthropic areas,

and vice versa, in patches equal to or smaller than 2 hectares. In these cases, the

corresponding pixels from the last year receive the same classification as the

penultimate year as well as pixels from the first year receive the same classification

as the second year.

Exceptionally, the spatial effect of some filters was limited to a set of polygons, in

such a way as not to modify the entire zone classification. Similarly, in some cases,

filters were applied only for specific years. Examples of these filters include: a

grassland filter that unifies wet and dry years, taking into account the coverage of

that place and not the rainfall of a particular year. Or a rice filter that corrects sites

classified as wet grasslands, only for certain years, as long as it has been previously

classified as agriculture.

4.4.7 Discrimination Between Pasture and Agriculture

In much of the study region (Uruguay, southern Brazil), previous collections jointly

classified annual crops and perennial pastures into a single category (Class 21:

agriculture or pasture). For these regions as well as in three regions of Argentina,

this category was separated into its main components—temporary crops and

perennial pastures—using a methodology different from the one previously

described. The inputs and methodology used are detailed below.

4.4.7.1 Imagery

To separate Class 21 (agriculture-pasture as a single class) into agricultural crops

and pastures for the entire temporal series (1985–2023), satellite images from

Landsat 5, 7, 8, and 9 were used. To harmonize measurements across sensors, the

Landsat image collections were harmonized following the approach proposed by Roy

et al. (2016).

From the harmonized image collection, quarterly and annual composites were

generated:
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A) Quarterly composites:

● Median of reflective bands (B, G, R, NIR, SWIR1, SWIR2).

● Median of various spectral indices (NDVI, GNDVI, NDMI, NBR).

B) Annual composites (corresponding to an agricultural year: July–June):

● Median, maximum, minimum, standard deviation, and day of the year for

reflective bands (B, G, R, NIR, SWIR1, SWIR2).

● Median, maximum, minimum, standard deviation, and day of the year for

spectral indices (NDVI, GNDVI, NDMI, NBR).

A total of 81 bands of information were considered for the classification process.

4.4.7.2 Classification

From the Collection 4 classification output a mask of Class 21 was applied for each

year within the study period, and only the pixels within this mask were reclassified. A

supervised approach using the Random Forest classifier was employed for the

classification. Ground truth data, available only for Uruguay, were used mixing three

climatically contrasting years: 2015, 2016, and 2020 (Figure 5). These data allowed

the training of a generic classifier that accounts for climatic variability and was

applied to each year in the temporal series. Therefore, samples of temporary crop

and pasture from Uruguay were used to train the classifier, which was then applied in

Argentina, Brazil and Uruguay.
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Figure 5: distribution of temporary crop and pasture training samples.

4.4.7.3 Post-processing

Post-processing involved applying a modal spatial filter (3x3 window) and a temporal

filter (3 years) exclusively for pastures. The purpose of the temporal filter was to

eliminate pastures lasting less than one year, a scenario that is agronomically

unlikely since pastures generally have a lifespan of 3 to 4 years.

The generated map was then integrated with the original map, resulting in an

updated cartography that separates Class 21 into temporary crops (class 19) and

perennial pastures (class 15) (Figure 6).
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Figure 6: Illustrative image of the separation of Class 21 into temporary crop (green)

and pasture (yellow), along with the integration into the original map.

5 VALIDATION STRATEGIES

Validation was performed for the classifications of the years 1986, 1991, 1996, 2001,

2006, 2012, 2018 and 2022 following the good practices recommendations proposed

by Olofsson et al. (2014) for area and error estimation. A total of 2,330 samples were

defined as necessary for the analysis. The number of samples for each class was

proportional to the area of each class obtained from Collection 1 for the year 2010.

Independent samples were raffled and class classified by visual interpretation of

Landsat images, very high resolution images from Google Earth and time series of

vegetation indices. Two interpreters evaluated each of the sample points generated

from the stratified random design. In those sample points where discordance in class

classification was detected among interpreters, a third interpreter defined the final

class assignment. When a final class could not be defined by the three interpreters

(e.g. three different class assignments), a final class was agreed by a team of

interpreters. More details of the validation methodology are described in Baeza et al.

(2022).

Validation results for collection 4 are in process and will be added soon to the ATBD

document in a next version. For this collection were included samples discriminating

the classes pasture and temporary crops for the years 1991, 1996, 2006, 2012 and

2022. For collection 3, validation results showed an overall accuracy of 75% for

1986, 79 % for 2001 and 80% for 2018. In all three cases, most of the associated

errors were location mismatches rather than quantity mismatches (see Pontius and
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Milloes, 2011), allowing for more precise area estimates (global accuracy + location

mismatch): 91%, 93% and 90% for the years 1986, 2001 and 2018, respectively.

Tables 3, 4 and 5 show the contingency matrices performed to evaluate the outcome

of the classifications of collection 3 for the years 1986, 2001 and 2018 from the

independent data set explained above. Figure 7 shows the user and producers

accuracies (the opposite of commission and omission errors, respectively) of each

category. The lowest accuracies (in percentage) occurred in the forestation class in

1986, mainly due to confusion with natural woody cover. This was associated with

the low proportion of forest plantations in that year and the difficulty of discriminating

between these coverages without higher resolution images. Another important

confusion was associated with the mixing of wetlands with grasslands, associated

with the change in flooding levels of floodable grasslands. The largest number of

points incorrectly classified (by inclusion or omission) was due to confusion between

grassland and the agriculture/pasture class. The high physiognomic similarity and

the intra class heterogeneity of the spectral response of both natural grasslands

(different communities, landscape positions, location in the study area) and sown

pastures (different species, sowing dates, pasture age, etc.) generate an overlapping

of the spectral signatures of both coverages, which explains the confusion in some of

the evaluated points.

Table 3. Contingency matrix resulting from comparing the 1986 map with the independent data set of
the same year (Collection 3).

Reference

Total

C
l
a
s
s
i
f
i
c
a
t
i
o
n

Classes
Natural
woody

vegetation

Forest
plantation Wetland Grassland Agriculture

or pasture
Non-vegeta
ted area

River,
lake or
ocean

Natural woody
vegetation 145 7 5 24 6 0 0 187

Forest plantation 3 6 1 2 1 0 0 13

Wetland 8 1 106 6 1 0 1 123

Grassland 58 3 64 694 72 4 0 895
Agriculture or
pasture 14 1 24 218 581 1 0 839
Non-vegetated
area 1 0 1 11 4 22 0 39
River, lake or
ocean 0 0 3 1 1 0 65 70

Total 229 18 204 956 666 27 66 2166

24



Table 4. Contingency matrix and omission and commission errors resulting from comparing the 2001
map with the independent data set of the same year (collection 3).

Reference

Total

C
l
a
s
s
i
f
i
c
a
t
i
o
n

Classes
Natural
woody

vegetation

Forest
plantation Wetland Grassland Agriculture

or pasture
Non-vegeta
ted area

River,
lake or
ocean

Natural woody
vegetation 146 14 3 26 8 0 0 197

Forest plantation 2 19 0 4 1 0 0 26

Wetland 8 1 91 9 8 0 7 124

Grassland 28 8 42 569 170 1 1 819

Agriculture or
pasture 2 2 10 66 739 0 0 819

Non-vegetated
area 0 0 0 11 0 17 0 28

River, lake or
ocean 0 0 1 1 0 0 71 73

Total 186 44 147 686 926 18 79 2086

Table 5. Contingency matrix and omission and commission errors resulting from comparing the 2018
map with the independent data set of the same year (Collection 3).

Reference

Total

C
l
a
s
s
i
f
i
c
a
t
i
o
n

Classes
Natural
woody

vegetation

Forest
plantation Wetland Grassland Agriculture

or pasture
Non-vegeta
ted area

River,
lake or
ocean

Natural woody
vegetation 150 9 2 21 6 0 0 188

Forest plantation 3 55 0 1 4 0 0 63

Wetland 7 1 85 6 9 0 7 115

Grassland 24 9 39 438 193 1 1 705

Agriculture or
pasture 0 0 14 35 848 2 0 899

Non-vegetated
area 0 1 1 10 2 17 0 31

River, lake or
ocean 0 0 2 0 1 0 71 74

Total 184 75 143 511 1063 20 79 2075
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Figure 7. User and producer accuracies for each of mapped class in each evaluated year (collection
3).
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